skip to main content


Search for: All records

Creators/Authors contains: "Souza, Lara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The possible influence of global climate changes on agricultural production is becoming increasingly significant, necessitating greater attention to improving agricultural production in response to temperature rises and precipitation variability. As one of the main winter wheat-producing areas in China, the temporal and spatial distribution characteristics of precipitation, accumulated temperature, and actual yield and climatic yield of winter wheat during the growing period in Shanxi Province were analysed in detail. With the utilisation of daily meteorological data collected from 12 meteorological stations in Shanxi Province in 1964–2018, our study analysed the change in winter wheat yield with climate change using GIS combined with wavelet analysis. The results show the following: (1) Accumulated temperature and precipitation are the two most important limiting factors among the main physical factors that impact yield. Based on the analysis of the ArcGIS geographical detector, the correlation between the actual yield of winter wheat and the precipitation during the growth period was the highest, reaching 0.469, and the meteorological yield and accumulated temperature during this period also reached its peak value of 0.376. (2) The regions with more suitable precipitation and accumulated temperature during the growth period of winter wheat in the study area had relatively high actual winter wheat yields. Overall, the average actual yield of the entire region showed a significant increasing trend over time, with an upward trend of 47.827 kg ha−1 yr−1. (3) The variation coefficient of winter wheat climatic yield was relatively stable in 2008–2018. In particular, there were many years of continuous reduction in winter wheat yields prior to 2006. Thereafter, the impact of climate change on winter wheat yields became smaller. This study expands our understanding of the complex interactions between climate variables and crop yield but also provides practical recommendations for enhancing agricultural practices in this region 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. Aim: Roots and rhizospheres host diverse microbial communities that can influence the fitness, phenotypes, and environmental tolerances of host plants. Documenting the biogeography of microbiomes can detect the potential for a changing environment to disrupt host-microbe interactions, particularly in cases where microbes, such as root-associated Ascomycota, buffer hosts against abiotic stressors. We evaluated whether root-associated fungi had poleward declines in diversity as occur for many animals and plants, tested whether microbial communities shifted near host plant range edges, and determined the relative importance of latitude, climate, edaphic factors, and host plant traits as predictors of fungal community structure. Location: North American plains grasslands Taxon: Foundation North American grass species ⎯ Andropogon gerardii, Bouteloua eriopoda, B. gracilis, B. dactyloides, and Schizachyrium scoparium and their root-associated fungi Methods: At each of 24 sites representing three replicate latitudinal gradients spanning 17° latitude, we collected roots from 12 individual plants per species along five transects spaced 10 m apart (40 m × 40 m grid). We used next-generation sequencing of the fungal ITS2 region, direct fungal culturing from roots, and microscopy to survey fungi associated with grass roots. Results: Root-associated fungi did not follow the poleward declines in diversity documented for many animals and plants. Instead, host plant identity had the largest influence on fungal community structure. Edaphic factors outranked climate or host plant traits as correlates of fungal community structure; however, the relative importance of these environmental predictors differed among plant species. As sampling approached host species range edges, fungal composition converged among individual plants of each grass species. Main conclusions: Environmental predictors of root-associated fungi depended strongly on host plant species identity. Biogeographic patterns in fungal composition suggested a homogenizing influence of stressors at host plant range limits. Results predict that communities of non-mycorrhizal, root-associated fungi in the North American plains will be more sensitive to future changes in host plant ranges and edaphic factors than to the direct effects of climate. 
    more » « less
  3. Most biological invasion literature—including syntheses and meta-analyses and the resulting theory—is reported from temperate regions, drawing only minimally from the tropics except for some island systems. The lack of attention to invasions in the tropics results from and reinforces the assumption that tropical ecosystems, and especially the continental tropics, are more resistant to invasions. We have critically assessed biological invasions in the tropics and compared them with temperate regions, finding relatively weak evidence that tropical and temperate regions differ in their invasibility and in the traits that determine invader success and impacts. Propagule pressure and the traits that promote adaptation to disturbances (e.g., high fecundity or fast growth rates) are generally favorable to invasions in both tropical and temperate regions. We emphasize the urgent need for greater investment and regional cooperation in the study, prevention, and management of biological invasions in the tropics. 
    more » « less
  4. Aim: Ongoing alterations to Earth’s biogeochemical cycles (e.g., via fertilization, burning of fossil fuels, and pollution) are expected to impact plants, plant consumers and all subsequent trophic levels. While fertilization experiments often reveal arthropod nutrient limitation by nitrogen and phosphorus via effects on plant nutrient density and biomass, these macronutrients are only two of many nutrients important to arthropod fitness. Micronutrients are key to osmoregulation and enzyme function and can interact synergistically with macronutrients to shape the geography of arthropod abundance. We examine arthropod response to macro- and micronutrient fertilization as a function of nutrient type, application amount, duration, frequency, and plant responses to fertilization with the goal of addressing how ongoing alterations to biogeochemical cycles will shape future grassland food webs. 
    more » « less
  5. Abstract

    Arthropod abundance and diversity often track plant biomass and diversity at the local scale. However, under altered precipitation regimes and anthropogenic disturbances, plant–arthropod relationships are expected to be increasingly controlled by abiotic, rather than biotic, factors. We used an experimental precipitation gradient combined with human management in a temperate mixed‐grass prairie to examine (1) how two drivers, altered precipitation and biomass removal, can synergistically affect abiotic factors and plant communities and (2) how these effects can cascade upward, impacting the arthropod food web. Both drought and hay harvest increased soil surface temperature, and drought decreased soil moisture. Arthropod abundance decreased with low soil moisture and, contrary to our predictions, decreased with increased plant biomass. Arthropod diversity increased with soil moisture, decreased with high surface temperatures, and tracked arthropod abundance but was unaffected by plant diversity or quality. Our experiment demonstrates that arthropod abundance is directly constrained by abiotic factors and plant biomass, in turn constraining local arthropod diversity. If robust, this result suggests climate change in the southern Great Plains may directly reduce arthropod diversity.

     
    more » « less
  6. Abstract

    Shifts in dominance and species reordering can occur in response to global change. However, it is not clear how altered precipitation and disturbance regimes interact to affect species composition and dominance.

    We explored community‐level diversity and compositional similarity responses, both across and within years, to a manipulated precipitation gradient and annual clipping in a mixed‐grass prairie in Oklahoma, USA. We imposed seven precipitation treatments (five water exclusion levels [−20%, −40%, −60%, −80%, and −100%], water addition [+50%], and control [0% change in precipitation]) year‐round from 2016 to 2018 using fixed interception shelters. These treatments were crossed with annual clipping to mimic hay harvest.

    We found that community‐level responses were influenced by precipitation across time. For instance, plant evenness was enhanced by extreme drought treatments, while plant richness was marginally promoted under increased precipitation.

    Clipping promoted species gain resulting in greater richness within each experimental year. Across years, clipping effects further reduced the precipitation effects on community‐level responses (richness and evenness) at both extreme drought and added precipitation treatments.

    Synthesis:Our results highlight the importance of studying interactive drivers of change both within versus across time. For instance, clipping attenuated community‐level responses to a gradient in precipitation, suggesting that management could buffer community‐level responses to drought. However, precipitation effects were mild and likely to accentuate over time to produce further community change.

     
    more » « less
  7. Abstract

    Patterns of insect herbivory may follow predictable geographical gradients, with greater herbivory at low latitudes. However, biogeographic studies of insect herbivory often do not account for multiple abiotic factors (e.g., precipitation and soil nutrients) that could underlie gradients. We tested for latitudinal clines in insect herbivory as well as climatic, edaphic, and trait‐based drivers of herbivory. We quantified herbivory on five dominant grass species over 23 sites across the Great Plains, USA. We examined the importance of climate, edaphic factors, and traits as correlates of herbivory. Herbivory increased at low latitudes when all grass species were analyzed together and for two grass species individually, while two other grasses trended in this direction. Higher precipitation was related to more herbivory for two species but less herbivory for a different species, while higher specific root length was related to more herbivory for one species and less herbivory for a different species. Taken together, results highlight that climate and trait‐based correlates of herbivory can be highly contextual and species‐specific. Patterns of insect herbivory on dominant grasses support the hypothesis that herbivory increases toward lower latitudes, though weakly, and indicates that climate change may have species‐specific effects on plant–herbivore interactions.

     
    more » « less
  8. Abstract Aim

    Roots and rhizospheres host diverse microbial communities that can influence the fitness, phenotypes, and environmental tolerances of plants. Documenting the biogeography of these microbiomes can detect the potential for a changing environment to disrupt host‐microbe interactions, particularly in cases where microbes buffer hosts against abiotic stressors. We evaluated whether root‐associated fungi had poleward declines in diversity, tested whether fungal communities in roots shifted near host plant range edges, and determined the relative importance of environmental and host predictors of root fungal community structure.

    Location

    North American plains grasslands.

    Taxon

    Foundation grasses –Andropogon gerardii, Bouteloua dactyloides, B. eriopoda, B. gracilis,andSchizachyrium scopariumand root fungi.

    Methods

    At each of 24 sites representing three replicate 17°–latitudinal gradients, we collected roots from 12 individuals per species along five transects spaced 10 m apart (40 m × 40 m grid). We used next‐generation sequencing of ITS2, direct fungal culturing from roots, and microscopy to survey fungi associated with grass roots.

    Results

    Root‐associated fungi did not follow the poleward declines in diversity documented for many animals and plants. Instead, host plant identity had the largest influence on fungal community structure. Edaphic factors outranked climate or host plant traits as correlates of fungal community structure; however, the relative importance of environmental predictors differed among plant species. As sampling approached host species range edges, fungal composition converged in similarity among individual plants of each grass species.

    Main conclusions

    Environmental predictors of root‐associated fungi depended strongly on host plant species identity. Biogeographic patterns in fungal composition suggested a homogenizing influence of stressors at host plant range limits. Results predict that communities of non‐mycorrhizal, root‐associated fungi in the North American plains will be more sensitive to future changes in host plant ranges and edaphic factors than to the direct effects of climate.

     
    more » « less